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Abstract 

This research is concerned with a combined theoretical, experimental and numerical study 

of the ultrasonic-assisted freezing of micro-sized water droplets. The main objectives of 

the study are to gain an improved understanding of ice nucleation and the freezing of 

micro-sized water droplets induced by the high pressures from acoustic cavitation, and 

the subsequent effects on the freezing temperatures of the droplets. This work is 

motivated by the need to develop effective approaches to generating engineered ice 

particles with uniform sizes and spherical shapes for a range of industrial applications, 

such as in air-conditioning systems, medical cooling, food storage, ice pigging, and the 

broader field of cold energy storage.  

In this study, a theoretical framework was developed to describe the relationship between 

ice nucleation and pressure. Specifically, fundamental improvements were incorporated 

into the existing models to capture the transition of the ice-water interface using an 

approach based on the distribution of the molecular kinetic energy which, in turn, 

eliminated the need to specify the ice-water interface energy and activation energy 

typically required in conventional methods. A good agreement was obtained between the 

predictions of the model and the experimental data from the literature for temperatures 

down to 190 K, indicating that the model was able to capture all of the essential elements 

of the ice nucleation phenomenon using a simplified approach. With the measurable 

parameters as the inputs, including the enthalpy of fusion, the hydrogen-bond energy, the 

pressure-dependent melting temperatures and the pressure-dependent densities of the 

solids/liquids, this theoretical framework can be readily extended and applied to analyse 

the nucleation of other liquids with hydrogen-bonds. 
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The experimental work is focused on the adaptation of the classic ice nucleation triggering 

techniques, which are based on acoustic cavitation, to systems with confined volumes of 

water (i.e., micro-sized droplets). In particular, two mechanical triggering methods were 

developed. In the first method, the fine solid particles submerged in a droplet were used 

to provide free sites for the inception of cavitation bubbles. In the second method, 

cavitation bubbles were formed within a continuous medium carrying the suspended 

droplets. Both methods used acoustic vibrations to trigger the ice nucleation. In the first 

method, it was found that the fraction of the frozen droplets increased with an increase in 

the concentration of the particle numbers, the intensity of the vibrations and the vibration 

induction time. It was evident that the nucleation sites in this approach were limited to 

the regions between the solid particles and the vibrating substrate which, in turn, indicated 

that the contact pressures due to the collisions of the particles with the substrate greatly 

influenced the onset of the ice nucleation. In the second method, the fraction of the frozen 

droplets was also found to increase with an increase in the intensity of the vibrations and 

the vibration induction time. The experimental observations showed that the sites of the 

onset of the ice nucleation were on the droplet’s surface, where strong interactions were 

encountered between the cavitation bubbles (formed in the continuous phase) and the 

droplets (in the dispersed phase). It was evident that the cavitation bubbles triggered the 

onset of the ice nucleation.  

Numerical studies based on the lattice Boltzmann method (LBM) were carried out to gain 

a better understanding of the underlying mesoscale physics of the ice nucleation and 

freezing processes for the above approaches. Specifically, the study developed a model 

which coupled the conventional pseudo-potential multi-relaxation-time LBM (MRT-

LBM) with a thermal LBM to investigate the dynamics of the cavitation bubbles, 

including their growth and collapse and the subsequent ice nucleation and freezing 
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processes. The thermal LBM was extended by: (i) the inclusion of the recalescence stage 

(rapid growth of dendritic ice); and (ii) the inclusion of a criterion for the pressure-

dependent onset of the ice nucleation. In this model, the Stefan number was used to 

determine the initial ice fraction for the entire spectrum of the degrees of supercooling in 

the recalescence stage. The Simon-Glatzel equation was applied to correlate the ice 

melting curve with the local pressure field which, in turn, governed the onset of the ice 

nucleation. Both the data in the literature data and the experimental data collected as part 

of this study were used to validate the model. It was found that the deviations fell within 

the limits of experimental error.  

The model was then used to gain insights into a number of phenomena, including: (i) the 

effects of the recalescence stage on the freezing process; (ii) the ice nucleation induced 

by the cavitation bubbles; (iii) the evolution of the pressures of the cavitation bubbles 

inside the crevices; and (iv) the evolution of the pressures on the surfaces of the droplets 

in the vicinity of the collapsing cavitation bubbles. The simulation results showed that the 

inclusion of the recalescence stage had a significant effect on the accuracy of predicting 

ice-water interface evolution for supercooling degrees greater than 20 K. Given that the 

freezing of a small droplet often bears a supercooling degree of more than 30 K, and the 

local supercooling degree could be significantly increased by the high pressures created 

by the collapse of the cavitation bubbles, therefore an accurate description of the freezing 

can be achieved only when the recalescence stage has been taken into account. Simulation 

results also captured the sudden rise in local temperature following the rapid (isentropic) 

process of cavitation bubble collapse. The local temperature rose significantly exceeded 

the ice melting temperature preventing the freezing process to proceed. These results 

suggest that maintaining a sufficiently large initial supercooling degree or use of 

additional mechanisms to force the ice crystals to migrate to the low-temperature regions 
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are essential to achieve complete freezing of water droplets. The collapse dynamics of the 

air bubbles trapped in the crevices on the surfaces of the solid particles was found to be 

sensitive to the morphological characteristics of the crevices, with the collapse of the 

bubbles in a hemispherical crevice generating the highest pressures. More importantly, 

the results provided a potential theoretical explanation on how the presence of solid 

particles assists with the initialisation of the ice nucleation in a droplet. Lastly, the 

simulation results showed that the onset of the ice nucleation on the surfaces of the 

droplets was strongly dependent on the distance between the bubble collapse point and 

the surface of the droplet. The simulation results were used to develop a correlation for 

predicting the minimum distance required to initiate ice nucleation in the droplet as a 

function of the key operating parameters, including the sizes of the cavitation bubbles and 

the amplitudes of the external pressures.  

The effectiveness of the method of triggering the ice nucleation with the cavitation 

bubbles for continuous production of micro-sized ice particles dispersed in an immiscible 

liquid was examined experimentally. Specifically, the yield and quality of ice particles, in 

terms of the fractions of the frozen droplets, the distributions of the particle sizes and the 

roundness ratios of the ice particles, were examined as a function of the characteristics of 

the ultrasonic vibrations, namely the power output of the sonicator, the duty cycle of the 

vibrations and the offset distance of the sonicator probe. It was found that the production 

yield could be increased with increases in the power output of the sonicator, the duty cycle 

of the vibrations and the offset distance of the sonicator, but that it was decreased with a 

reduction in the temperature of the cooling module. However, the increase in the yield led 

to a loss of quality as the mean diameter of the water droplets used for producing the ice 

particles was in a range from 535 µm to 567 µm. After the ice nucleation using the 

cavitation bubbles, the mean diameters of the ice particles produced were measured in a 
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range from 450 µm to 590 µm. The freezing temperature achieved was as high as 269 K 

with a fraction of frozen droplets of 2% and a roundness ratio for the ice particles of 1. 

The highest fraction of frozen droplets was about 92% which was obtained at 262 K, 

whereas the roundness ratio of the ice particles decreased drastically to around 45%.  

The results of the present study should prove useful in the application of the ultrasonic 

vibration-assisted nucleation of supercooled liquids in other fields, such as freezing of 

saline water droplets, solidification of molten metals, and freezing of biomaterials, in 

which the supercooling phenomenon is often encountered.  
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𝐽ℎ Homogeneous ice nucleation rate cm−3 s−1 

𝑁ag Avogadro constant - 

𝑁𝑐 Number concentration of IG - 

𝑃EOS Reduced pressure from the equation of state - 
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Chemical-potential difference between ice and liquid 
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∅ Source term - 

Subscripts   

𝛼 Discrete velocity direction - 
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